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We use holding time methods to study the asymptotic behavior of pure birth 
processes with random transition rates. Both the normal and slow approaches 
to infinity are studied. Fluctuations are shown to obey the central limit theorem 
for almost all sample-transition rates. Our results are stronger, and our proofs 
simpler, then those of recently published studies. 
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1. I N T R O D U C T I O N  

R a n d o m  walks in r andom environments  have received much attention 
from mathematical  physicists in recent years, (1 lo) mainly as models for the 
mot ion  of  electrons in crystals with impurities. The presence of the defects 
perturbs the normal  hopping  behavior  of the electrons from one ion of the 
crystal to the next, thus modifying the t ranspor t  properties of  the medium. 
Because the nature and location of the defects can only be controlled in 
a statistical sense, their effect is best taken into account  by treating the 
transition rates of the walk as random variables. 

The main  objects of interest relate to the asymptot ic  properties of the 
stochastic process X, describing the posit ion of the particle at time t. Fo r  
instance, we would like as precise a description as possible of 

lim X,/t (1) 
t ~ o o  

and 

lim t - l / 2 (X , -  E [ X , ] )  (2) 
t ~ o o  
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Expression (1) can be interpreted as the asymptotic velocity of the particle 
and is related to the electric conductivity of the disordered medium. 
Expression (2) describes fluctuations. It is of special importance to identify 
those quantities that are sample independent, that is, independent of the 
particular realization of the disorder. 

In a series of recent articles, Aslangul et a/. (4-6) have studied the very 
special case where the random walk is one-dimensional and constrained to 
jump to the right only (in the accepted terminology, this is a pure birth pro- 
cess). Accordingly, they consider the following set of differential equations 
for the probability P,(t) that at time t the process Xt is in state n e N: 

P',(t) = -WnP,( t )+ W,_IP,_I(t), n>. l 

P ; ( t )  = - WoPo(t) ( 3 )  

W ~ where _W= { j}j--0 is a sequence of independent identically distributed 
nonnegative random variables. Using generating functions and rather 
opaque asymptotic expansions, they obtain the following results: 

_ ---- W ~ W For almost every sample w { j}j=0 taken from _W= { j}j=0 the 
following limits hold: 

1 
l i r a -  Ew[X,] = (E[ Wol] )  1 (4) 
, ~  t 

lim 1Dw[X,]  = E [ W o Z ] ( E [ W o l ] )  3 (5) 
, ~  t 

In these formulas, as everywhere in this article, we index by w all the 
probabilistic quantities computed for a fixed sample w of _W. Averaging 
over the Wj is denoted by E[-] .  Formulas (4) and (5) show that the mean 
asymptotic velocity and the asymptotic variance of Xt/~tt are sample- 
independent. The method of proof used in ref. 4 is so involved that a full 
proof of (5) is not included and that even the proof of the simpler formula 

lim 1E{Dw[X,]} .=E[Wo2](E[Wol])-3 (6) 
t ~ x ~  t 

is said (again without details) to depend on the properties of modified 
Bessel functions. 

In this article we use holding times to obtain straightforward proofs of 
formulas that are stronger than (4) and (5), namely: 

For almost samples _w 

lim Xt/t= ( E [ W o l ] )  1 for almost all sample paths of X, (7) 

FX'-EwEX'3 ] 
lirn Pv L ~ ~<x = ~2(x)  (8) 
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where q5 :(x) is the normal probability distribution function with zero 
mean and variance 0 -2 

1 fx y2/2~ 2 ~ : ( x )  - e dy (9) 
0 " ~  --oo 

0 - 2 = E [ W o 2 ] ( E [ W o l ] )  3 (10) 

Formula (7) shows that the averaging over all paths in (4) is unnecessary, 
whereas (8) gives the full limiting distribution of the fluctuations. 

Firially, it is of interest to study what happens when E[  Wo 1 ] = ~ .  In 
that case the rate of divergence of Xt to infinity is always slower than 
linear. The characterization of this rate is delicate (see Section 4), but can 
be described roughly as follows: 

If for some 0 < / ~ <  1, E [ W  o ~] = ~ but E [ W o  ~+~] < oo for all e > 0 ,  
then t;  is the rate of approach of Xt to infinity, in the sense that the limit 
of X j t  ~ is zero if ~ >/~ and infinity if ~ </~. The description of the limiting 
behavior of X j t  ~ requires a more detailed knowledge of the distribution of 
Wo -I (see Section 4). 

To conclude this introduction, we direct the reader to a previous study 
of a related problem: a discrete-time birth and death process with random 
transition rates. (11'12) Superficially, the asymptotic results obtained in these 
articles resemble ours, but the authors do not (as we do) establish limit 
laws that hold for almost all environments. A pertinent physical discussion 
of the various concepts of limit laws for random walks in random environ- 
ments can be found in ref. 13. 

2. PRELIMINARY:  THE PURE BIRTH PROCESS 

In this section, we gather well-known results about the pure birth 
process.(14 16) This is the continuous-time integer-valued Markov process 
{X,, t >/0} defined by the transition probabilities 

P w [ X , = n l X o = O ] = P ~ ( t ) ,  P [ X o = O ]  = 1 (11) 

where 

P'n(t) = --wnP,(t  ) + Wn_ 1Pn_ l(t), 

P'o(t) = -woPo( t )  

n>~l 
(12) 

In (12) the wj, j = 0 ,  1, 2 ..... are given positive numbers. In words, the only 
allowed transition out of state n is to state n + 1, and this occurs with 
rate w,. 
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An equivalent description of this process can be given in terms of 
holding times(14-16): once the process has reached state n, it stays there for 
a random time Tn, after which it jumps to n + 1. The holding times To, T1, 
T2 .... are independent random variables which are exponentially distributed 
with parameters Wo, Wx, w2,...: 

Pw[Tj> xj, O<~ j<~n]=exp(- ~ wixj) (13) 
j = 0  

The connection between the two viewpoints is made by the formula 

Xt = max{n: S, ~< t} (14) 

where So = 0 and 

n - - 1  

s . =  Z vJ, 1 (15) 
j = 0  

is the time of the nth jump. A sample path {xt, t~>0} of the pure birth 
t process and the corresponding realization { j}j=o of the sequence of 

holding times are represented in Fig. 1. 
Note that, from (14), a sample path xt reaches infinity in a finite time 

if and only if infinitely many jumps occur during [0, T), i.e., 
Ef=o tj= < oo. 

Using the fact that the random variables Tj are independent and 
exponentially distributed, it is easy to check that the set of such paths has 
probability zero if and only if 

~ w  s 1 =  ~ (16) 
j=O 

:it' 

i , 

t .  t,*~:, %*1:? t z 

Fig. 1. A sample path and its holding times. 
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Holding times provide a convenient way of studying the asymptotic 
properties of the process: 

k o m m a  1. Suppose that (16) holds, but w f ~ < o o ,  j = 0 , 1 , 2  ..... 
Then for any e > 0 the following relations hold almost surely: 

lim sup X J t  ~ = lim inf n - 1/~ (17) 
t ~ o o  \ n ~ o o  j = 0  

lira i n f X , / t  ~ = li p n TM (18) 
t ~ o o  j = O  

In particular, 

lim Z , / t  ~ = n ~/~ T~ (19) 
t ~ o o  j = 0  

whenever the limit in the right-hand side exists. 

so that 

But 

Proof. Under the conditions of the lemma, 

n - - 1  

Tj < 0% ~ Tj /" oo, P~-almost surely (20) 
j = O  

lim sup X , / t  ~ = lim sup XTo + ... + r .  ] ( T o  + "'" + T n -  t )~  

lim inf X t / t  ~ = lim inf Xv0 + ... + T. ] (To + ""  + 7",_ i)~ 
t ~ o o  n ---~ oo 

(21) 

(22) 

Xr0+ ... +r.  l = n  (23) 

so that the conclusion follows by rewriting 

n / ( T o +  . . .  + T , _ l ) ~ = ( n - 1 / ~ ( T o +  --. + T ,  1)) -~ | (24) 

We note also for future reference the following properties of the 
holding times: 

P r o o o s i t i o n  1. Suppose that (i) 

n - - 1  

lim n I ~ wj 2 = a < ~  (25) 
n ~ o o  j = O  
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and (ii) 

Then 

that is to say 

n - - I  
lim n -2 Z wj - 2 = 0  (26) 

n ~ c o  j = 0  

n 1 

lira n 1 ~ Tj = a in probability (27) 
n ~  j = O  

I n - - I  a ] 
r e > 0 ,  lim Pw n -1 ~" T j -  <e  =1 (28) 

n ~ c o  j = O  

Proof. It is well known that when the limiting random variable is 
degenerate, convergence in probability is equivalent to convergence i n  
distribution (see ref. 17, p. 260); hence it suffices to prove 

lim Ew exp -An 1 Tj = e x p ( - 2 a )  (29) 
n ~  j = O  

for all 2 >/0. But since the random variables Tj are independent, 

E_w exp - 2 n  -1 Tj = l-[ ( l+2n- lwj -1 )  1 (30) 
j = 0  j = 0  

=exp - ~ l og ( l+2n  'w j  1) (31) 
j ~ O  

It is thus sufficient to prove 
r/--1 

lira ~ log(1 +2n l w j l ) = 2 a  (32) 
n ~  j= 0 

This in turn follows from the assumptions (25), (26) because 

2 a -  n~l log(1 + 2n- lw j  -1) 
j = 0  

n 1 W J  1 <~2 a- -n  - l  
j = O  

n 1 

"[- E I ~n lWj l - l o g ( 1  + ) ~ n - l w j - X ) l  ( 3 3 )  

j = o  

n--1  n - -  1 

<~ 2 a-- n - '  E Wj 1 _[_ (}2/2n2) E wj-2 (34) 
j = o  j = o  
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where we made use of the elementary inequality 

0~<x- log(1  +x)<~x2/2, x>~O | (35) 

It turns out that when the number a in (25) is 0 or infinity, condition 
(26) can be dispensed with: 

P rop os i t i on  2. Suppose that for some 7 > 0  

lim 
n ~ o o  

where a is either 0 or oo. Then 
n - - 1  

lira n ~ 
n ~ o o  j = O  

namely 

n - - 1  

n -~ ~ w f l = a  (36) 
j=O 

Tj = a in probability (37) 

I n--1 1 Ve >0,  lim Pw n ~ ~ Tj<e =1 if a = 0  (38) 
n ~ o c  j = 0  

] Ve>0, limooP v n -~ ~ Tj>e =1 if a = o o  (39) 
j=O 

Proof. As in Proposition 1, we investigate 

[ ( nx 
Ew exp - 2 n  -7 ~', = r [  ( l - t - ) J - /  y w / 1 )  1 (40) 

j = o  j = o  

But note that for any nonnegative numbers ao, al,..., a, 

1+ ~ aj<<. l~ ( l+a j )~<exp  aj 
j = o  j = o  j o 

so that 

exp - 2 n  -~ ~ w~'  ~<E~ exp -)~n -~ Tj 
j = o  j = o  

~< l+)~n -~ ~ w21 
j = 0  

(41) 

(42) 

Hence for any 2 t> 0 

l i m  E w exp --2n-~ Tj = if a=Go 
j=O 

which is equivalent to (38), (39). | 
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3. THE A S Y M P T O T I C  VELOCITY 

Consider now a pure birth process where the transition rates are 
random variables { Ws}j~ o. We will assume that the Wj are independent 
identically distributed nonnegative random variables with no atom at the 
origin [see, however, Remark (i) after Proposition 1]. A first consequence 
of this assumption is that the "non-blow-up" condition (16) holds for 

W o~ W co almost all samples _w= { s}j=o of [W= { j}j=0- Indeed, there must exist 
0 < c < cc such that P[  W0 < c] > 0, so that 

~, PEW, 1>c 11: L PFWo<c]=oo (44) 
j=O j=0 

and thus by the Borel-Cantelli lemma (17'18) 

implying 

P [ W f  I > c -1 infinitely often] = 1 (45) 

V Wj ' =  oo =1 (46) 
J 

By Lemma 1, the computation of l i m t ~ X , / t  reduces to that of 
(lim, n- I  . - 1  ~ ~j=o T]) -1. This last expression is obviously of the right 
form for the application of some law of large numbers. Such a procedure 
will indeed yield the correct result, but note that the blind application of 
Kolmogorov's strong law of large numbers for non-identically distributed 
random variables (see ref. 17, p. 364) to compute limn_~ n -1 , -1  Ej=o Tj for 
a given sample _w of W will require the condition 

j 2Dw[Ti_l] < ~ ,  i.e., ~ j 2wj21< ~ (47) 
j =  1 j =  1 

For this condition to hold for almost every sample _w we will need, by the 
two series theorem (see ref. 17, p. 361), 

L J 4DFWj ~2]  < oo (48) 
j--1 

which holds whenever 

E [ W o  4] < oo (49) 

It turns out that condition (49) can be considerably weakened by using 
LoSve's version of the strong law of large numbers (see Theorem 7 in the 
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Appendix and ref. 18, p. 253). Note for the sake of comparison that in 
ref. 4, E[Wo q'] is assumed to exist for all q>~O. 

Theorem 1. Suppose that for some e>0,  

E [ W o l - q  < ~ (50) 

Then for almost all samples _w, almost all sample paths of X, obey 

lim Xt/t= ( E [ W o l ] )  -~ (51) 

Proof. Take any realization w of _W; by Lemma 1 we have to prove 

n - - i  

lim n -1 ~ T j = E [ W o l ] ,  Pw-almost surely (52) 
n ---~ oo 

j = 0  

By Theorem 7(ii) we have 

n - - 1  

lim n 1 2 (Tj--wf-1) =0, 
n ~ o o  j = O  

provided that for some c~ ~> 1 

Pw-almost surely (53) 

El W n _ l ~ O 0  

n = l  

Note the obvious identity 

(54) 

E•[TT]-- x~w~e-WJX dx=wf~F(c~ + l) (55) 

By Theorem 7(i), condition (54) will hold for almost every sample _w of _W 
if for some/? < 1 

• n - ~ E [ W o  ~ ]  < oo (56) 
n = l  

For this condition to hold it suffices to choose a,/? so that eft = 1 + e; 
for instance, 

l + e  
(57) /?= l - -e ,  ~ = l - - s  

Hence, under the single assumption (50), we have (53). On the other hand, 
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by the strong law of large numbers for independent identically distributed 
random variables (see Theorem 8), we have 

n 1 

lim n 1 ~ wj I=E[Wol] (58) 
n ~  j = O  

for almost samples w whenever E[Wo 1] < ~ .  | 

Remarks. 

(i) The assumption that the random variables Wj are identically 
distributed can be relaxed and replaced by 

~ P [ W j < e ] = ~  for some ~>0 (59) 
j = 0  

and 

~ j 1 ~E[Wj_ll,~]<(x3 forsome 6 > 0  (60) 
j = l  

These two conditions ensure that (16) and (54) still hold almost surely. 
Theorem 1 remains valid provided that E[-Wo 1 ] is replaced by 

n 1 

lim n - '  ~ E[-Wj 1] (61) 
n ~ c : o  j = O  

(ii) Obviously, (50) implies E [ - W o l ] < ~  because, if F is the 
probability distribution function of W0, then 

E[Wo 1 ] = f x -1 dF(x) 
ro, oo) 

=f[o.l]X l dF(x)+ f(1.~)x m dF(x) (62) 

<~f x-l-~dF(x)+f dF(x) 
[ 0 , 1 ]  (1, o~) 

~<E[Wo 1-~] + 1 (63) 

(iii) Since the original motivation for turning the transition rates into 
random variables was to account for the introduction of impurities in the 
system, it is instructive to compare the asymptotic velocity of the model 
with disorder to that of the classical model with transition rates equal to 
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the mean value of the Wj. Since the W s are identically distributed, the 
comparison random walk is a pure birth process where all the transition 
rates are equal to 

w = E[  Wj] (64) 

and this is of course the Poisson process {Nt, t~>0} with rate w. Its 
asymptotic velocity is well known to be 

lim N,/t  = w = E[Wo]  (65) 
t ~ o ~ 3  

that 
Since the function x-1,  x > 0, is convex, we see by Jensen's inequality 

(E[Wo']) l~<E[Wo3 (66) 

so that the disorder tends to slow down the process, as expected; see ref. 11 
for a similar discussion. Much more drastic forms of slowing down will be 
investigated in the next section. 

The assumption (50) can be further weakened if one is prepared to 
settle for a weaker form of convergence (although still almost sure with 
respect to _w): 

T h e o r e m  2. Suppose that E [ W  o 1 ] < ~ .  Then for 
samples _w the following limit holds: 

almost all 

lim X, / t=  (E[-Wol]) -1 in probability (67) 
t ~ c ( 3  

and 

Proof. By Proposition 1, it suffices to prove that the conditions 

n - - 1  

lira n 1 ~ wj I = E [ W o  1] 
n ~  j = O  

n 1 

lim n 2 ~ wj 2 = 0  
n ~ c #  j = O  

hold for almost every sample of w to conclude that 

n - -  1 

lim n - I  ~" T j = E [ W o  1] 
n ~  j = O  

in probability 

(68) 

(69) 

(70) 
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The first condition follows from the strong law of large numbers for 
independent identically distributed random variables (see Theorem 8). 
The second one follows from the Marcinkiewicz-Zygmund law of large 
numbers [see Theorem 9 with Xj= (Wj+I) -2, ~)= 1/2]. 

To see that (70) implies (67), note that 

Pw[Xt/t~(E[Wol]) 1 - a ] = P w [ X , ~ < ( ( E [ W o l ] ) 1 - ~ ) t ]  (71) 

= Pw []~)0 Tj>t] (72) 

where n(t) is the integer part 

n ( t )= [ ( (E[ -W o l ] )  l _ e ) t  ] (73) 

Hence 

i n(t) 1 Pw[X,/t~(E[Wol])-l-e]=Pv ( l + n ( t ) )  1 ~ Tj>t/(l+n(t)) 
j = 0  

(74) 

tends to zero as t--. oo in view of (70), (73). 
One can prove in the same way that the probability for Xt/t to exceed 

( E [ W o l ] ) - l + e  tends to zero for all e>0 .  | 

4. THE SLOW A P P R O A C H  TO INFIN ITY W H E N  E [ W o  1] = 

It is natural to ask what happens when E [ W o  ~] = oo (see refs. 10 and 
11 for a discussion of this problem in related models). Aslangul et al. (4) 

study this question by assuming that Wo has a probability density of the 
form 

d -~xP[Wo<<.x]=f(x)=x u l g ( x ) ,  0 < / ~ < l  (75) 

where g is some "cutoff function." We will introduce later a more general 
version of condition (75), but first we obtain a number of results that are 
independent of such a restriction. We first prove that if E[  Wo 1] = 0% no 
path of Xt can go to infinity as fast as t. This is based on the following 
simple observation: 

k e m m a  2. Let xj, j = 0 ,  1 ..... n - 1 ,  be nonnegative numbers and 
0~e~< 1. Then 

n ~ 1 Z ~ ~ (76) x)~< x1 ~ < Z  xj 
j = o  o j = o  
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Proof. To obtain the right-hand inequality, note that 

// xj xk~<l 
0 

so that, since 0 ~< ~ ~< 1, 

657 

(77) 

Proof. 

lim Xt/t = O, Pw-almost surely ( 8 0 )  

Using the left-hand inequality of Lemma 2, 

1 = 0  1 = 0  

n~1( n~iTj/)I/y 
lim inf n -  1 Tj >~ lim inf n 1 

n ~  j = O  \ n ~ v o  j = 0  
(82) 

But if we choose 0 < 7 < 1, we can prove as in Theorem 1 that almost 
surely 

n - 1  

lim n -1 ~ Tf=F(y+ I)E[Wo'] (83) 
r t ~ o o  j = O  

Hence 

n 1 

l iminfn  -1 ~ Tj>~{F(7+I)E[Wo~]} 1/7 (84) 
n ~ o o  j = O  

so that 

xj xk~< xj xk (78) 
k 0 0 

Sum (78) over j to obtain the result. The left-hand inequality follows from 
the particular form of H61der's inequality 

(n , \1/~ (n-1 \/n-lb]/(~_,)\(1-~)/~ 
0 j 0 j 

with a j = x j ,  b j =  1. | 

T h e o r e m  3. Suppose that E [ W o l ] =  0% but that E [ W o ~ ] < c ~  
for all 0 < ct < 1. Then for almost all realizations w of _W, the following limit 
holds: 
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This holds for all y < 1. Take the supremum over all 7 < 1 the right-hand 
side of (84) tends to infinity, proving 

n = l  

lim inf n -  1 ~,, Tj = o% Pw-almost surely (85) 
n ~  j = O  

which is equivalent to (80). | 

Since the rate of approach to infinity is not linear, we would like to 
characterize it. Our next theorem shows that Xt goes at least as fast as t ~ 
when E[  Wo ~] = oo. As in the previous section, results that hold for almost 
all paths require slightly stronger assumptions than results that hold in 
probability: 

T h e o r e m  4. The following results hold for almost all samples _w: 

(i) I f E [ W o ~ ] < o o  for some e < l ,  then 

lim X, / t  ~ = oo in probability (86) 
I ~ O O  

(ii) 

ProoL 
samples _w 

If E[  Wo ~ - ' ]  < oo for some ~ + e < 1, e > 0, then 

lim X t / t ~ =  oo, Pw-almost surely (87) 

By Lemma 1 and Proposition 2, (i) will hold if for almost all 

n - - 1  

lim n 1/~ ~ w / l = 0  (88) 
n ~ o o  j = 0  

But this is precisely the result guaranteed by the Marcinkiewicz-Zygmund 
law of large numbers when E [ W o  ~] < oo (see Theorem 9). 

To prove (ii), take ~ < 7 < a + e. Using the right-hand inequality in 
Lemma 2, we obtain 

l imsupn  1/~ ~ Tj~< l imsupn  1 (89) 
n ~ o o  j = O  \ n ~ c c  k = 0  

But since V < e + 8  and E [ W o  ~ "] < c~, we can prove as in Theorem 1 
that 

n - - 1  

lim n -1 ~ T~=F(~+I)E[Woq<~, 
n ~ o o  j = O  

Pw-almost surely (90) 
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Hence 

lim inf Xt/F >~ { r(y + 1 ) E [ Wo "~ ] } 1 > 0 
t~oo (91) 

so that 

lim inf X,/t ~ = lim inf (X,/F)(t ~-~) = oo | 
t~oo t~ao (92) 

It remains to place an upper bound (better than that of Theorem 3) on 
the rate of approach to infinity of X,. This turns out to be more delicate 
than the lower bound of Theorem 4, in the sense that it depends on the 
details of the probability distribution of Wo. However, the following partial 
result is independent of such details: 

P r o p o s i t i o n  3. Suppose that for some c~ > 0, E[  Wo "] = pp. Then 
for almost all samples _w 

lim inf X,/t ~ = O, Pw-almost surely (93) 

Proof. We prove first that for almost all _w 

n--1 

lim sup n-1/~ ~ wj 1 = oo (94) 
n~oo j=O 

This is because for any number c 

- o l  ] 
P n 1/~ ~ Wj 1>c >~p[n-V~W211>c] 

j = O  
(95) 

and the sum 

• P [ n - l / ~ W n 1 1 > c ] =  ~ P [ c - ~ W o ~ > n ]  
n=l n=l  

(96) 

diverges to oo ,when E[-Wo ~] = oo. Hence by the Borel-Cantelli lemma/is/  

P [n  1/:~wt~l 1 > C infinitely often] = 1 (97) 

and so 

I r/wl 1 p 1/. n ~ Wj ~ > c infinitely often = 1 (98) 
j = O  
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implying that with probability one 
n - - 1  

l imsupn  1/~ ~ W f l ~ c  (99) 
n ~  oo i = 0  

But this holds for any c, proving (94). 
Let now 

n 1 

L=limsupn -1/~ ~ Tj (100) 
n ~ o o  j = O  

Because the random variables Tj are independent, the random variable L 
is degenerate (and possibly infinite) (see ref. 17, p. 358). 

We get from (100) 

e - ~ L = l i m ~ f e x p  - 2 n  1/~ rj (101) 
j = O  

so that by Fatou's lemma and formula (30) 

e x p ( - 2 L ) ~ < l i m i n f E  exp -2n  -1/~ Tj (102) 
n ~ o o  j = O  

~<lim~f 1 +2n  1/~ wf  1 = 0  (103) 
j = 0  

Hence L = oo. The result follows by Lemma 1. | 

A complete description of the asymptotic behavior of X,/t ~ when 
E [ W o  =] = oo requires a somewhat detailed knowledge of the distribution 
of Wo. For the rest of this section we will assume that 

P[Wo<<.x]~x~L(x) as x - , 0 +  (104) 

where 0 < # < 1 and L(x) is a function which varies slowly at the origin, 
namely (see ref. 15, Vol. II, p. 276) 

lim L(xy)/L(x)= 1 for all y (105) 
x ~ O +  

Condition (104) is much more general than (75). Elementary manipula-  
tions show that (104) is equivalent to 

1-P[Wo'<<.y]~y  "L(y 1) as y--* +oo (106) 

which by a standard Tauberian theorem (see ref. 15, Vol. II, pp. 445, 447) 
is itself equivalent to 

1-E[e-ZWoL]~F(l~+l)2"L(2) as 2--* 0 +  (107) 
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1/~ ~-~n 1 1 Let us first investigate the behavior of n /--.j=o W f  
(104). 

P r o p o s i t i o n  4. Suppose that condition (104) holds, and let 

b= lim L(x) 
x ~ . O +  

Then (i) if ~ > #, 

(ii) 

but 

n 1 

lim n-  t/~ ~ W f  1 = oo almost surely 
n ~ o o  j = 0  

i f 0 ~ < b <  oo, 

n - - 1  

lira sup n-1/ .  ~ W f l  = ov almost surely 
. ~ o o  j = O  

n 1 

lira inf n-  1/~ ~ W f  1 = 0 almost surely 
n ~ o o  j = 0  

n 1 

lim n-  1/# Z Wj~ 1 = y in distribution 
n ~ o o  j - - O  

where the random variable Y is characterized by 

E[e-~. r ]  = e-br(.+ 1)),~ 

and (iii) if b = Go, (110) holds and 

n 1 

lim n 1/# ~ W j I =  oo 

Proof. For 2 ~> 0, ~ ~> #, compute 

lira E 

661 

under condition 

n 1 

(lOS) 

(109) 

(110) 

(111) 

(112) 

(113) 

in distribution (114) 

= lim { E [ e x p ( - 2 n  1/~Wo~)] }" 
n ~ o o  

Rewriting 

{E[exp( -- ~n -1 /~Wol )  ] }n 

= (1 -- {t -- E [ e x p ( - ) . n - 1 / ~ w ( l ) ]  })" 

( )" 1-E[exp ( -2n -1 /~Wol ) ]  )fn_~/~L(2 n i/~) F(# + 1) 
= 1 -- 2"n ~/~L(2n -1/~) F(#+ 1) 

(115) 

(116) 

(117) 

822/65/3-4-16 
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we see, using (107), that 

lim E exp - 2 n  ~/~ Wj- 1 
n ~ c o  j = O  

,f 

= p [ - bF(p + 1 ) 2 ~] if 

if 

e > #  

~=p ,  0~<b< oo (118) 

~ = / z ,  b =  oo 

proving (112) and (114). 
To conclude the proof, let 

n 1 

l= l im in fn  -1/~ ~ Wj 1 (119) 
n ~  oo j 0 

As the Wf  I are independent random variables, l is degenerate. Moreover, 
for 2/>0 

l imsupexp - 2 n  1/~ ~ Ws 1 = e x p ( - 2 / )  (120) 
n~oo  j=O 

so that by Fatou's lemma 

I (  )] exp(-2l )>~l imsupE exp - 2 n  -l/~ ~ W] ~1 (121) 
n~oo  j=O 

If c~ =/~ and 0 ~< b < o% this reads, by (118), 

e ;t>/e-br(u+l)'t', 2>/0 (122) 

hence 

l<<.bF(#+ l )2  ~-1, 2>~0 (123) 

This can hold for all 2's only if l=  0. This proves (111); the proof of (110) 
is similar. Finally, in order to prove (109), note that (117) implies that 
when e >/~ 

{E[exp(--2n-1/~Wo1)] }" < oo (124) 
n = l  

Then a fortiori for any c > 0 

P n-~/~ ~, W f - ' < c  <oo (125) 
n = l  j = O  
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so that by the Borel-Cantelli lemma 

i n - - ]  P n -  1/~ 

j = O  

W j  1 < c infinitely often I = 0 

and thus 

lim inf n-17~ ~ W71 > c, almost surely 
1 

r t ~  so j = O  

Since this holds for every c>O, (109) follows. | 

Remark. When b = o% the behavior of 

n 1 

lim inf n - 1/# ~ Wj 1 
n ~ o o  j = O  

(126) 

(127) 

depends on the details of the function L of formula (104); for instance, the 
finiteness or otherwise of 

• e x p [ - a  ~L(a-ln-1/u)] ,  a > 0  
n--1  

is relevant to this question. 
It remains to use Proposition 4 to obtain results on X,/ t  ~. 

T h e o r e m  5. Assume condition 
hold for almost every sample _w: 

(i) If c~ > I, 

lim X,/t  ~ = 0 in probability 
1 ~ o o  

(104). Then the following results 

(128) 

(ii) I fO~<b~oo 

lim inf X,/ t  ~ = 0, P w-almost surely (129) 
t ~ o O  

lira sup X,/ t  ~ = o% Pw-almost surely (130) 

Proof. Property (128) follows Propositions 2 and 4(i). Property 
(12',9) follows from Proposition 3. In order to prove (130), let 

n - 1  

l = l i m i n f n  1/~ ~, T1 
n ~ o o  j = O  
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We obtain, as in (120), 

e x p ( - 2 l )  = lira sup exp - 2 n  1/, Tj (131) 
n ~  j=O 

so that by Fatou's lemma, (42), and (111), 

e p, 
n - ~ o o  - j = O  

>~lim sup exp - 2 n  -1/~ w71 = 1 (133) 
n~oo j=O 

This proves that l = 0, and the conclusion follows using Lemma 1. | 

Remark. Theorem 5 contains no statement about the case ~ </~; this 
is covered by Theorem4 because under condition (104), E[-W 0 ~] < oo 
when ~ < p. 

5. F L U C T U A T I O N S  

Theorem 1 can be stated loosely as 

X,~t /E[Wo I] as t ~  (134) 

We investigate now corrections to that leading behavior. It would 
be natural to expect (by some central limit argument) that 
t -m(X t - t /E[Wol ] )  converges in distribution to a normal random 
variable. However, this is not so, the reason being that t/E[W o 1] is not a 
good enough approximation to Ew[Xt] on the magnified scale that we are 
using now; see Remark (ii) after Theorem 6. It turns out that the function 
pw(t) defined for any sample _w of _W by 

pw(t)=max n: ~ w ~ l ~ t  (135) 
j=O 

is a sufficiently improved approximation. Before stating our central limit 
result, we note a few properties of p~_(t). Obviously, if (16) holds, 
pw(t) 7 oo as t ~ oo. In fact, from (135) 

p ~ ( t ) -  1 p w(t) 

Z Wj 1 ~ / <  Z Wj ~1 (136) 
j=o  j - o  

so that for almost all realizations w of W 

lim t/pw(t)=E[Wo 1 ] (137) 
t ---* ~3  
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The fact that the upper bound of the sum in (136) is a random variable not 
independent of the summand causes no difficulty (see ref. 19, p. 13). 
Moreover, we have the following result. 

Lemma 3, 
tions w of _W 

Suppose that E[Wo 2] < o0; then for almost all realiza- 

pn(t) 1 

lira t -'/2 t -  ~ w E ' =0  (138) 
t ~ c  j = 0  

Proof. From (136) 

p~_(t) -- 1 
O ~ t - -  E W j  1 --1 < Wp,y(t ) 

/=0 

Hence, in view of (137) it suffices to prove 

lim n '/2w 21 _._ 0 almost surely 
n~o t3  

(139) 

(140) 

By the Borel-Cantelli lemma this will follow from 

~ P [ W ~ l > e n l / 2 ] < o o ,  V ~ > 0  

t l ~ o  

(141) 

which in turn follows from the assumption of the lemma, since 

p[w21>enl/2]= ~ p[e-2WoZ>n] (142) 
n = O  n = 0  

;? ~<P[e-2W0-2 >0]  + Pie 2Wo2>x]dx (143) 

= l + e  2E[Wo2] | (144) 

We can now state and prove our main central limit result: 

T h e o r e m 6 .  Suppose that E[Wo6]<oo .  Then for almost all 
realizations w of _W the following limit holds: 

lira Pw[t-1/2(Xt- pw(t)) ~< x] = ~2(x) (145) 

where ~b~2 is the normal probability distribution functon defined in (9), 
(10). 
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Choose a realization _w of _W; using (14), we see that 

Pw[t-~/Z(X,-p~(t))<<.x] =Pw[Xt<<.xt~/Z+pv(t)] (146) 

I N(t)- 1 t]  147) 
= Pw t_ +~o r+> ( 

where N(t) stands for the following integer part: 

N(t) = [xt 1/z + pw(t) + 13 (148) 

In preparation for the central limit theorem, we rewrite (146) in the form 

IN(t) 1 ] 
Pv ~=o (Tj--wf-1)/aN(t)>z(t) (149) 

J 

where a.  stands for the standard deviation 

0" n z W ~  2 

j 0 

and the argument r(t) is 

~(t)= t -  2 w/1 ~N~,~ 
j = 0  

(150) 

(151) 

Recall that for fixed _w the random variables Tj are independent and 
exponentially distributed with parameter wj. Hence the normal conver- 
gence of 

n 1 

(Tj- wf-l)/a~ (152) 
j = 0  

as n tends to infinity is easily verified, either by checking that the Lindeberg 
condition holds (15) or by direct calculation: 

E{ }1 exp(-22/2)Ev exp - 2  ~ (Tj-wfl)/o~ 
j = O  

n--1 
=exp(--22/2)exp ~ [2w71/~r~-log(l+2wf-~/a.)] (153) 

j = O  

n--1 
=exp ~ [2wf-~/a.-22w72/2~-log(1 +2w71/a~)] (154) 

j = o  
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The elementary inequality 

-x3 /3  <<. x - x2/2 - log(1 + x) ~ 0, 

implies for )~ ~> 0 

exp 

Moreover, 

x>~0 (155) 

.-1 3) 
-,~ ~ ws 

j=0 

[ { n 1 }1 ~<exp(-22/2)Ew_ exp - 2  2 ( T j - w f l ) / a .  
j=0 

~<l (156) 

" wf3  (157) 
~1 = n 3/2 "~:01 Wj3 

3 (n--1 n--1 ]=0 Gn Zj=0 W22) ~/~ 

converges to zero for almost any sample _w by the Marcinkiewicz Zygmund 
law of large numbers (see Theorem 9). Hence 

[{  n l  }] 
lim Ew_ exp - 2  ~. ( T j - w f ' ) / a ~  

n-+oo j=0 

or equivalently 

= exp(22/2) (158) 

as follows: 

( pw(t) l ) 
t ~/2 t -  ~ w f  ~ [ t / g ( t ) ] l / 2 - N  1/2(t) 

j=0 
+ [ N ( t ) - p w ( t ) ]  N ~/2(t) E [ W o ' ]  

N(t) -- l 
2 (wj ' -ErWol])  

j= pw(t) 
(162) 

in1 ] F . ( x ) = P  (Tj-wf~) /~.<<.x  --+ebl(x ) as n--+oo (159) 
j o 

By (147), (149) we have, with Fn as in (159), 

Pw[t 1/2(X,- pw(t)) <<. x] = 1 - gu(o(r(t)) (160) 

Obviously N(t) /" oo as t .* oo. We analyze now the argument r(t) [see 
(151)]: 

r(t) = N - 1 / 2 ( t ) [ t - ~ N ~  l wf~]  (161) 
[N- I ( t )  vN(O 1 z-..j= 0 Wj2] 1/2 

The denominator of (161) tends to (E[W o 2])1/2 for almost all _w by the 
strong law of large numbers (Theorem 8). As for the numerator, rewrite it 
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where we have assumed x > 0, so that N(t)> pw(t). The first term in (162) 
tends to zero by Lemma 3 and (148), (137). The second term converges to 
zero by Lemma 4 (see below) because there are only 

N(t) -- pw(t) ~ xt 1/2 + 1 (163) 

terms in the sum and N m ( t ) =  0(?/2). Finally, the last term is 

--x[t/N(t)] 1/2 E[ Wo 1 ] (164) 

and converges by (148), (137) to 

- -  x ( E  1- W o  1"] )3/2 (165) 

Thus, for almost all samples w we have 

lim z(t)= -x(E[W01])  3/2 (E[W02])  -1/2 (166) 
/~oO 

The case x < 0 is dealt with in a similar way. Moreover, the convergence 
of Fn to q~l in (159) is known to be uniform (see ref. 17, p. 342), so that we 
can conclude from (160), (159), and (166) that for almost all samples _w 

lira Pw[t-a/2(Xt- pw(t)) <. x] = 1 -CI)l(-X(E[Wol])  3/2 (E[W02]) -1/2) 
t ~ o o  

with a 2 as in (10). | 

Remarks. 

(i) The restriction 

= ~ 2 ( x )  (167) 

E[Wo 6] < o0 comes entirely from Lemma 4, 
which is presumably not optimal. 

(ii) If instead of (145) we had attempted to compute, as seems 
natural, 

lim Pw[t-1/e(X,-  t/E[ Wol])~< x] (168) 
t-~oo 

we would have been led to calculations similar to those of Theorem 6 with 
N(t) and v(t) replaced respectively by 

and 

M(t) = [xtl/2 + t /E[Wo ~ ] + 1] (169) 

v(t)= tM( t ) - l /Z -M- l / z ( t )  ~ w/1 M 1/2(t) aM(,) (170) 
j=0 
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Obviously M(t) ,z Go, so that, as in Theorem 6, 

)im a ~  FM(O (x) = qbl(x ) 

lim M-1/2(t) aM(t)= (E[-Wo2]) 1/2 

(171) 

(172) 

But the numerator of (170) is 

M ( t )  1 

{t-M(t) E[Wol]}M 1/2(t)-M 1/2(0 ~ (wj 1 - E [ W o l ] )  (173) 
j=o 

The first term of (173) converges t o  -x(E[Wol]) 3/2, but the second one 
must, by the law of the iterated logarithm (see ref. 17, p. 372), display huge 
fluctuations; namely, for almost every sample _w 

M ( t )  --  1 

l i m s u p M  I/2(0 ~ (174) 
t ~  vo j - - O  

M ( t )  1 

liminfM-1/2(t) ~ (175) 
t ~  j = O  

(wf  I -El-Wo 1])= 

(wf 1-E[wol])= - ~  

Consequently for almost all samples _w, and for all x 

lim sup Pw[t t/2(Xt- t/E[ mo 1]) ~ x] = 1 
I~<)C 

lira inf P w [ t - 1/2 ( X t  - t / E  [ W o 1 ] ) <~ x ] = 0 
t ~  

(176) 

(177) 

Lemma 4. Let Yj, j =  1, 2, 3 ..... be independent identically dis- 
tributed random variables with E[  Yj] = 0, E[  y6] < ~ .  Then 

n + 1 + . , / ' n  

lim n 1/2 E Yj = 0 almost surely 
n ~  oo j = n  

(178) 

Proof. It suffices to prove 

i .+1+~ yj ] 
Ys > 0, P n -  1/2 ~ > ~ infinitely often = 0 (179) 

j = n  

This will, by the Borel Cantelli lemma, follow from 

n _ > ~ < 

n = l  j = n  

(18o) 
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But 

P n - 1 / 2  E > ~  <~E 2 Y; (181) 
j = n  j = n  

Expanding the argument and using E[Yj]  = 0, we get for the right-hand 
side of (182) 

{ .+ 1 +./~ 6[ . + t +, / :  
- - -  Z E[r/]s[rl] //--3/~--6 E [ y 6 j  + 4! 2! j,~: 

j n 
j ~ k  

6! .+ l +,f~ 
+3!3--5 Y j ,k  -- n 

j<k  

6! .+1+,/~ } 
+2T2!2 !  ~ E[YZ]E[Y~]E[Y~]  (183) 

�9 j , k , l=n 
j < k < l  

= , - 3 ~ - 6 { E  [ y6] n-1/2_}_ 15El Y14 ] n [  y123 n~/2(n ~ / 2 -  1) 

+ 20(El- Y~])2 nl/2(nt/2 _ 1)/2 

+ 120(E[- y23)3 nl/2(nl/2 __ 1)(//1/2 _ 2)/6} (184) 

which is obviously summable since it is of order n -3/2. I 

APPENDIX �9  S O M E  STRONG LAWS OF LARGE N U M B E R S  

The following result can be extracted from ref. 18, p. 253: 

T h e o r e m  7 (Lo6ve). Let X., n = 1, 2, 3 ..... be a sequence of inde- 
pendent random variables; suppose that there exist numerical sequences 
b. /~ 0o and 0 < r .  ~< 2 such that 

~,  rn rn bE- E[IX.I ] < 0o (A1) 
n = l  

Then (i) ~.~=~bf f l (x . -  a.) converges almost surely. 

(ii) b~lZ;=l  (Xj -a j )  converges almost surely to zero, where the 
numbers a.  are defined as follows: 

0 if 0 < r .  < 1 

a . =  E[X. , ]  if l~<r.~<2 
(A2) 
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If the random variables X, are identically distributed, the standard 
convergence result is as follows (see ref. 17, p. 366): 

T h e o r e m  8 (Kolmogorov). Let X,,  n = 1, 2, 3 ..... be a sequence of 
independent identically distributed random variables with E[[Xn[] < oo. 
Then 

lim n -1 ~ X j = E [ X 1 ]  almost surely (A3) 
n ~ o o  j = l  

The following result sharpens Theorem 7 in the identically-distributed 
case (see ref. 20, p. 125): 

T h e o r e m  9 (Marcinkiewicz-Zygmund). Let X,,  n = 1, 2, 3 ..... be a 
sequence of independent identically distributed random variables. Suppose 
that for some 0 < 7 < 2, E[IX.[ '~] < oo. Then 

lira n 1/-~ ~ (X i -  a) = 0 almost surely (14) 
n ~ o o  j = l  

where 

0 if 0 < 7 < 1  

a =  E[X1 ] if 1~<7<2 
(15) 
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